Microwave radar signatures of precipitation from S band to Ka band: application to GPM mission

نویسندگان

  • Luca Baldini
  • Dmitri Moisseev
چکیده

Radars at different frequencies have been used over five decades for observing precipitation. S and C bands have been employed for long range coverage observations. Dual-polarization X-band radars have been shown to be useful for networked applications. Space borne precipitation radars have been at Ku band, or higher frequencies such as Ka, as in the GPM mission. This paper presents a comprehensive and unified view of radar precipitation observations at these bands, highlighting the advantages, limitations and the specific applications associated to them. Moreover, relationships between radar measurements at different bands in rain are illustrated. Examples of their use to predict attenuation margin and to simulate observations of the dual polarization, dual frequency Ku and Ka scanning radar D3R to be used in the ground validation program of the GPM mission are shown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rain retrieval over land from X-band spaceborne synthetic aperture radar: a model study

Numerous studies conducted as part of the Tropical Rainfall Measurement Mission (TRMM) program have demonstrated the benefits of space-borne precipitation measurements. The NASA Global Precipitation Mission (GPM) is an outgrowth of TRMM that will provide improved precipitation measurements and extend those measurements to higher latitudes. GPM satellite will carry a microwave imager coupled wit...

متن کامل

Simulation of Space-borne Radar Observations of Precipitation at Ku and Ka Band

Global Precipitation Measurement (GPM) is poised to be the next generation precipitation observations from space after the TRMM mission. The GPM will carry a dual-frequency precipitation radar (DPR), operating at Ku and Ka band frequencies. Since space-borne precipitation observations have never been done in Ka band before, extensive research work on dualfrequency radar, including electromagnet...

متن کامل

Gpm Field Campaigns for Algorithm Physics

The Global Precipitation Mission (GPM) will employ a constellation of ~8 satellites to measure precipitation between +/-65o latitude[1]. The GPM constellation will fly microwave radiometers accompanied by a core “reference” satellite carrying a Ka-Ku band dual-frequency radar (DPR) and an improved passive microwave radiometer (GMI; frequencies 10-183 GHz). Fundamentally, the improved GPM remote...

متن کامل

The NASA Dual-Frequency Dual-Polarized Doppler Radar (D3R) System For GPM Ground Validation

Following on the successful introduction of single-frequency (Ku-Band) weather radar onboard the Tropical Rain Measuring Mission (TRMM) satellite in 1997, the Global Precipitation Measurement (GPM) mission attempts to advance further the goal of making global scale precipitation observations by deploying the next generation of satellite-borne weather radars. The GPM satellite will carry a Ka-Ku...

متن کامل

Microphysical Retrieval from Dual-frequency Gpm P7.1 Observations

Following the success of the Tropical Rainfall Measuring Mission (TRMM), considerable effort has been directed at the next generation of space-based precipitation radar (PR) to be launched aboard the Global Precipitation Measuring (GPM) core satellite. The GPM mission concept is centered on the deployment of a core observatory satellite with an active dual-frequency precipitation radar (DPR), o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012